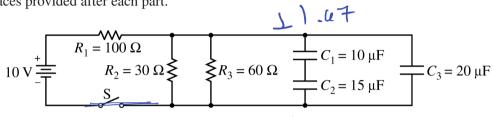
Begin your response to **QUESTION 1** on this page.


PHYSICS C: ELECTRICITY AND MAGNETISM

SECTION II

Time—45 minutes

3 Questions

Directions: Answer all three questions. The suggested time is about 15 minutes for answering each of the questions, which are worth 15 points each. The parts within a question may not have equal weight. Show all your work in this booklet in the spaces provided after each part.

- 1. The circuit shown above is composed of an ideal 10 V battery, three resistors and three capacitors with the values shown, and an open switch S. The capacitors are initially uncharged. Switch S is now closed.
 - (a) Calculate the current through R_1 immediately after switch S is closed.

Switch S has been closed for a long time, and the circuit has reached a steady state.

(b) Calculate the potential difference across R_1 .

i. Calculate the charge stored on the positive plate of capacitor C_2 .

1. Calculate the charge stored on the positive plate of capacitor
$$C_2$$
.

$$Q = C_{eq} V$$

$$= U_1 + U_2 = U_2 + U_3 = U_4 + U_2 = U_5 = U_4 + U_5 = U_5 = U_4 + U_5 = U_5 = U_5 U_5$$

ii. Is the charge stored on capacitor C_3 greater than, less than, or equal to the charge stored on capacitor C_2 ?

Less than Equal to Greater than

Justify your answer.

Qz = 1, le 7 V × 20 MF = 33.3 MC

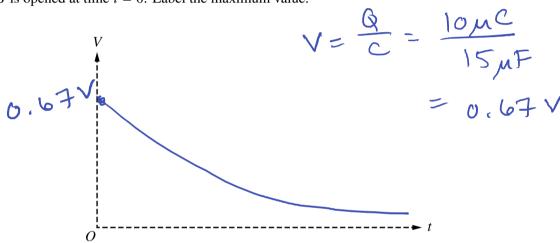
GO ON TO THE NEXT PAGE.

Use a pencil or pen with black or dark blue ink only. Do NOT write your name. Do NOT write outside the box.

Continue your response to **QUESTION 1** on this page.

Switch S is then opened.

(d)


i. Determine the current through R_1 immediately after the switch is opened.

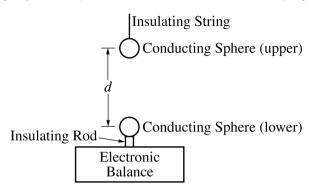
ii. Calculate the current through R_2 immediately after the switch is opened.

(e) On the axes below, sketch a graph of the potential difference V across capacitor C_2 as a function of time tif switch S is opened at time t = 0. Label the maximum value.

Capacitor C_3 is replaced by two 10 μ F capacitors connected in series, switch S is closed, and the circuit reaches equilibrium. Switch S is then opened at time t = 0.

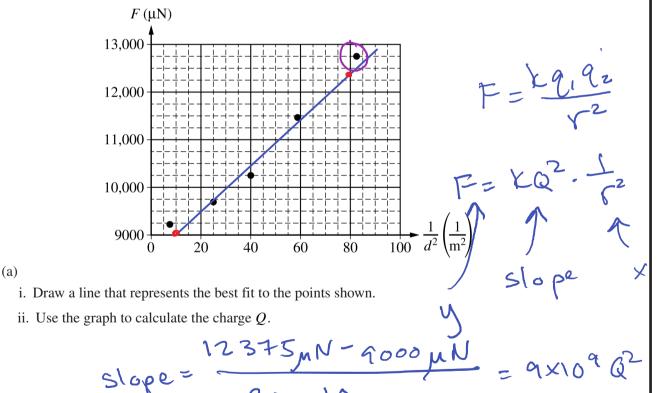
(f) For t > 0, would the sketch of a graph of the new voltage across C_2 as a function of time be above, below, or the same as the sketch for part (e)?

Above


Below ____ The same

Justify your answer.

same same voltage V
but RC time
constant is smaller => faster drop to ov


GO ON TO THE NEXT PAGE.

Begin your response to QUESTION 2 on this page.

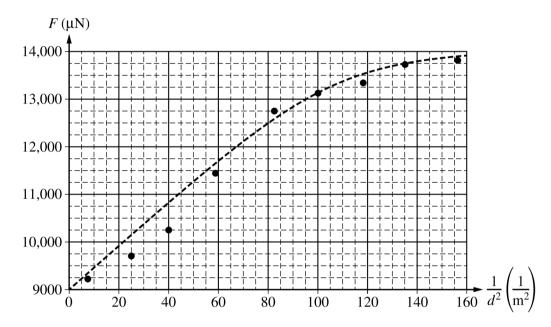
2. Students perform an experiment to study the force between two charged objects using the apparatus shown above, which contains two identical conducting spheres. The upper sphere is attached to an insulating string, which can be used to move the sphere downward. The lower sphere sits on an insulating rod, which is on an electronic balance. The electronic balance is zeroed before the lower sphere and insulating rod are in place.

For the first trial, a charge of Q is placed on each sphere and then the upper sphere is slowly moved downward. The students measure the distance d between the centers of the spheres and the magnitude F of the force that appears on the electronic balance. The recorded data are shown on the graph of F as a function of $\frac{1}{d^2}$ shown below.

Use a pencil or pen with black or dark blue ink only. Do NOT write your name. Do NOT write outside the box.

GO ON TO THE NEXT PAGE.

Continue your response to **QUESTION 2** on this page.


- iii. On the graph on the previous page, draw a circle around the data point that was taken when the distance between the centers of the spheres was the least.
- iv. Determine the distance between the centers of the spheres for the data point indicated above.

v. What physical quantity does the vertical intercept represent?

es the vertical intercept represent?

weight of insulating rod + sphere

Justify your answer.

The experiment is extended by collecting additional data points, which appear on the right side of the graph shown above. The new data points do not follow the linear pattern seen with the first points. The group of students tries to explain this discrepancy.

(b) One student suspects that charge is slowly leaking off the top sphere. Could this explain the discrepancy?

Yes

Justify your answer.

& is less at closer

distances >> lower

when dz is larger

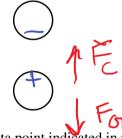
GO ON TO THE NEXT PAGE.

Use a pencil or pen with black or dark blue ink only. Do NOT write your name. Do NOT write outside the box. © 2021 College Board.

Continue v	vour	response	to	QUESTION	2	on	this	page.

(c) A second student suspects that the excess charges have rearranged themselves, polarizing the spheres.

i. On the circles representing the spheres below, use a single "+" sign on each sphere to represent the locations of highest concentration of the excess positive charges.



ii. Explain how this rearrangement could be responsible for the discrepancy.

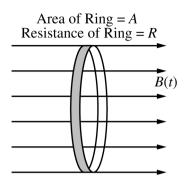
Freduces at low dist

(d) A third student suggests that the experiment be modified so that the top sphere is given a negative charge that is equal in magnitude to the positive charge given to the bottom sphere.

i. On the circles representing the spheres below, use a single "+" sign on the bottom sphere to represent the location of highest concentration of the excess positive charges. Use a single "-" sign on the top sphere to represent the location of the highest concentration of the excess negative charges.

ii. For a separation distance equal to that of the data point indicated in part (a)(iii), would the magnitude of the force reading with spheres of opposite charges be greater than, less than, or equal to the magnitude of the force reading with spheres of the same charges?

Less than Greater than

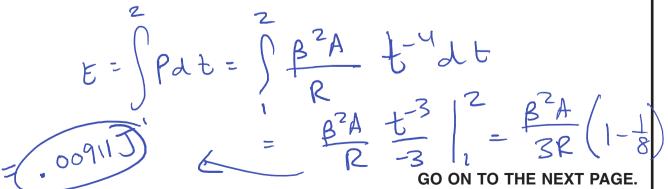

Justify your answer.

the Fc would be pointing up due to attraction. This would make the net force smaller

GO ON TO THE NEXT PAGE.

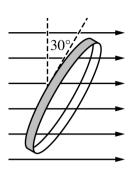
Use a pencil or pen with black or dark blue ink only. Do NOT write your name. Do NOT write outside the box.

Begin your response to QUESTION 3 on this page.



- 3. A thin, conducting ring of area A and resistance R is aligned in a uniform magnetic field directed to the right and perpendicular to the plane of the ring, as shown. At time t = 0, the magnitude of the magnetic field is B₀.
 At t = 1 s, the magnitude of the magnetic field begins to decrease according to the equation B(t) = β/t, where β has units of T·s.
 - (a) Derive an equation for the magnitude of the induced current I in the ring as a function of t for t > 1 s. Express your answer in terms of β , A, R, t, and physical constants, as appropriate.

Assume $A = 0.50 \,\mathrm{m}^2$, $R = 2.0 \,\Omega$, and $\beta = 0.50 \,\mathrm{T} \cdot \mathrm{s}$.


(b) Calculate the electrical energy dissipated in the ring from t = 1 s to t = 2 s.

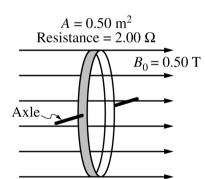
$$P = J^2 R = \frac{\beta^2 A^2}{R^2 t^4} R = \frac{\beta^2 A^2}{R} \frac{1}{t^4}$$

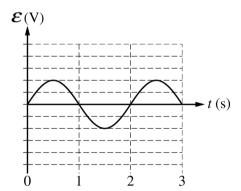
Use a pencil or pen with black or dark blue ink only. Do NOT write your name. Do NOT write outside the box. © 2021 College Board.

Continue your response to **QUESTION 3** on this page.

The ring is then rotated so that the plane of the ring is aligned at a 30° angle to the magnetic field, as shown.

The magnitude of the magnetic field is reset to a magnitude of B_0 at a new time t = 0 and again begins to decrease at t = 1 s according to the equation $B(t) = \frac{\beta}{t}$, where β has units of T·s.


(c) Will the amount of energy dissipated in the ring from t = 1 s to t = 2 s be greater than, less than, or equal to the energy dissipated in part (b)?


Greater than

Less than ____ Equal to

Justify your answer.

less Area due to B field not being perpendicular for surface

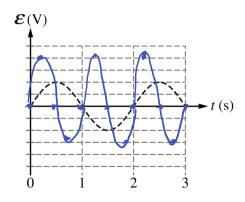
The ring is now mounted on an axle that is perpendicular to the magnetic field. The magnitude of the magnetic field is now held at a constant $B_0 = 0.50 \, \text{T}$, as shown. The ring rotates about the axle, and the emf ε induced in the ring as a function of time t is shown on the graph.

(d) Calculate the angular speed ω of the rotating ring in rad/s.

T= 28

 $f = \frac{\omega}{2\pi} = -\frac{\omega}{2\pi}$

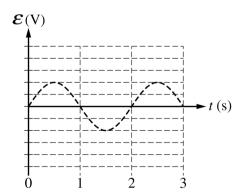
GO ON TO THE NEXT PAG


Use a pencil or pen with black or dark blue ink only. Do NOT write your name. Do NOT write outside the box.

Continue your response to QUESTION 3 on this page.

(e) Calculate the magnitude of the maximum emf $\varepsilon_{\rm MAX}$ induced in the ring.

The ring now begins to rotate at an angular speed 2ω


(f) On the graph below, draw a curve to indicate the new induced emf ε in the ring. The dashed curve shows the emf induced under the original conditions.

Justify your sketch, specifically identifying and addressing any similarities or differences between the sketch still sinusoid w/ 2x amplitude and the original graph.

and & frequency

PRACTICE GRAPH - Use the graph below to practice your sketch for part (f). Any work shown on the graph below will NOT be graded.

GO ON TO THE NEXT PAGE.

Use a pencil or pen with black or dark blue ink only. Do NOT write your name. Do NOT write outside the box. © 2021 College Board.